ambulance bed bolt briefcase calendar chain chevron-left chevron-right clock-o commenting-o commenting comments diamond envelope-o envelope facebook feed flask globe group heart-o heart heartbeat hospital-o instagram leaf map-marker medkit phone quote-left quote-right skype star-o star tint trophy twitter user-md user youtube

LEE LAB

for Biological and Machine Intelligence Research

Relative luminance and binocular disparity preferences are correlated in macaque primary visual cortex, matching natural scene statistics

Samonds JM, Potetz BR, Lee TS | PNAS | 2012 | 10.1073/pnas.1200125109 | PDF
Humans excel at inferring information about 3D scenes from their 2D images projected on the retinas, using a wide range of depth cues. One example of such inference is the tendency for observers to perceive lighter image regions as closer. This psychophysical behavior could have an ecological basis because nearer regions tend to be lighter in natural 3D scenes. Here, we show that an analogous association exists between the relative luminance and binocular disparity preferences of neurons in macaque primary visual cortex. The joint coding of relative luminance and binocular disparity at the neuronal population level may be an integral part of the neural mechanisms for perceptual inference of depth from images.